National Repository of Grey Literature 5 records found  Search took 0.01 seconds. 
Role of the WIP1 phosphatase in the nucleolus
Palková, Natálie ; Macůrek, Libor (advisor) ; Sztacho, Martin (referee)
Protein phosphatase 2C delta (known as WIP1) is an important negative regulator of the DNA damage response (DDR) signalling. As a chromatin-bound protein, it dephosphorylates and thus inactivates ATM kinase and the transcription factor p53. Increased expression of WIP1 suppresses the function of the tumour suppressor p53 and contributes to the development of several cancer types, including breast and brain tumours. In recent years, it has been shown that WIP1 can also regulate cellular processes that are not directly linked to DDR, such as ensuring telomere stability. However, alternative functions of the WIP1 protein have not yet been fully understood. In this work, we described a novel role of the WIP1 phosphatase in the nucleolus, the organelle responsible for ribosome biogenesis. We found that WIP1 associates with many nuclear proteins, and using deletion mutants, we identified a nucleolar localisation sequence (NoLS) at the C-terminus of the protein. Using super-resolution microscopy, we detected the localisation of WIP1 phosphatase in the fibrillar centres of the nucleolus. We employed an inducible Cas9 system for generating double-strand breaks in ribosomal DNA and found that WIP1 has an impact on recruitment of DNA repair factors to the nucleolar caps. Analysis based on quantitative...
The role of truncated PPM1D/Wip1 phosphatase in cancer
Martiníková, Andra-Stefania ; Macůrek, Libor (advisor) ; Souček, Pavel (referee) ; Mistrík, Martin (referee)
When encountering damage, the cells activate the DNA Damage Response (DDR) pathway and stop the cell cycle until the DNA is repaired. PPM1D/WIP1 phosphatase resumes the cell cycle after the damage has been repaired, by directly dephosphorylating DNA damage markers. The DDR pathway prevents genome instability or cancer development. Mutations in the Ppm1d gene encoding PPM1D result in an overstable and truncated protein observed both in cancer patients and in cancer cell lines. In this thesis, we used an "in-house" transgenic mouse model in which mutations in the exon 6 of the Ppm1d gene resulted in a truncated PPM1D protein. First, we observed high PPM1D levels and impaired DDR to gamma ionizing radiation (IR) in the mouse thymi having truncated PPM1D (Ppm1dT/+ ). We then bred the Ppm1dT/+ mice with the Trp53+/- heterozygote knock-out mice which are prone to thymic lymphoma. The Ppm1dT/+ Trp53+/- double-mutants had a higher frequency of developing IR-induced T-cell lymphomas, compared to the single Trp53+/- mutants. Moreover, truncated PPM1D leads to a defective cell cycle checkpoint activation in human non-transformed RPE cells (RPE1), which then proliferate despite the presence of DNA damage. RPE1 cells also display increased proliferation after replication stress. RPE1 or U2OS cells with...
Potenciální využití WIP1 fosfatasy v terapii nádorového onemocnění prsu
Pecháčková, Soňa ; Macůrek, Libor (advisor) ; Souček, Pavel (referee) ; Krejčí, Lumír (referee)
Cells in our body respond to genotoxic stress by activation of a conserved DNA damage response pathway (DDR). Depending on the level DNA damage, DDR signaling promotes temporary cell cycle arrest (checkpoint), permanent growth arrest (senescence) or programmed cell death (apoptosis). Checkpoints prevent progression through the cell cycle and facilitate repair of damaged DNA. DDR represents an intrinsic barrier preventing genome instability to protect cells against cancer development. WIP1 (encoded by PPM1D) phosphatase is a major negative regulator of DDR pathway and is essential for checkpoint recovery. This thesis contributed to the understanding of molecular mechanisms of WIP1 function and revealed how WIP1 can be involved in tumorigenesis. Firstly, we described that WIP1 protein levels decline during mitosis by APC-Cdc20 dependent proteasomal degradation. WIP1 is phosphorylated at multiple residues which inhibit its enzymatic activity. We propose that inhibition of WIP1 in mitosis allows sensing of low levels of DNA damage that appear during unperturbed mitosis. Further, we identified novel gain-of-function mutations of PPM1D which result in expression of C-terminally truncated WIP1. These truncated WIP1 variants are enzymatically active and exhibit increased protein stability. As result, cells...
Potenciální využití WIP1 fosfatasy v terapii nádorového onemocnění prsu
Pecháčková, Soňa ; Macůrek, Libor (advisor) ; Souček, Pavel (referee) ; Krejčí, Lumír (referee)
Cells in our body respond to genotoxic stress by activation of a conserved DNA damage response pathway (DDR). Depending on the level DNA damage, DDR signaling promotes temporary cell cycle arrest (checkpoint), permanent growth arrest (senescence) or programmed cell death (apoptosis). Checkpoints prevent progression through the cell cycle and facilitate repair of damaged DNA. DDR represents an intrinsic barrier preventing genome instability to protect cells against cancer development. WIP1 (encoded by PPM1D) phosphatase is a major negative regulator of DDR pathway and is essential for checkpoint recovery. This thesis contributed to the understanding of molecular mechanisms of WIP1 function and revealed how WIP1 can be involved in tumorigenesis. Firstly, we described that WIP1 protein levels decline during mitosis by APC-Cdc20 dependent proteasomal degradation. WIP1 is phosphorylated at multiple residues which inhibit its enzymatic activity. We propose that inhibition of WIP1 in mitosis allows sensing of low levels of DNA damage that appear during unperturbed mitosis. Further, we identified novel gain-of-function mutations of PPM1D which result in expression of C-terminally truncated WIP1. These truncated WIP1 variants are enzymatically active and exhibit increased protein stability. As result, cells...
Effect of food quantity and quality on population growth rate and digestive activity in planktonic rotifers.
ŠTROJSOVÁ, Martina
As homeostatic organisms, rotifers have to use the mechanism to cope with nutrition unbalance in their food. The regulation of digestive enzyme activities as a possible physiological mechanism involved in maintaining of rotifer homeostasis was studied. This study further explored the effect of food quantity and quality on rotifer population growth rate and reproduction.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.